Understanding Limits Graphically and Numerically

Consider the graph of the function f(x), graphed below:

Using the graph, find the value of each of the following limits. If a limit does not exist, explain why.

$A. \lim_{x \to -3^-} f(x)$	B. $\lim_{x \to -5} f(x)$	C. $\lim_{x\to 4} f(x)$		
α	4	Ч		
D.) $\lim_{x \to 2^+} f(x)$	E.) $\lim_{x \to 2^-} f(x)$	F.) $\lim_{x\to 2} f(x)$ PWE right hand does not equal left		
G.) $\lim_{x \to -1} f(x)$	H.) $\lim_{x \to -\infty} f(x)$	I.) $\lim_{x \to \infty} f(x)$		

Now you give it a try. Consider the graph shown below to find the value of each of the following limits. If a limit does not exist, explain why.

$A. \lim_{x \to -5^+} f(x)$	B. $\lim_{x \to -2} f(x)$	C. $\lim_{x \to -3} f(x)$	
7	4	5	
D.) $\lim_{x\to 3^+} f(x)$ No E No function as $X \to 3^+$	E.) $\lim_{x \to 3^-} f(x)$	F.) $\lim_{x \to -5^-} f(x)$	
G.) $\lim_{x\to 0} f(x)$	H.) $\lim_{x \to -9} f(x)$ PNE h. function as $\chi - \gamma q = -1$	I.) $\lim_{x \to 4^+} f(x)$	

Limits are the "backbone" of understanding that connect algebra and geometry to the mathematics of calculus. In basic terms, a limit is just a statement that tells you what height a function *INTENDS TO REACH* as you get close to a specific *x*-value. Recall from Pre-Calculus that you evaluated three types of limits. Complete the table below:

PROPER LIMIT NOTATIONS					
TYPE OF LIMIT	PROPER NOTATION	VERBALLY:			
Right-hand limit	1im x->c+ f(x)	C fum the right			
Left-hand limit	lim x7c- f(x)	C from the left			
General limit	x->c f(x)	limit as X approaches C			

Consider the function shown below.

Say you want to find $\lim_{x\to d^+} f(x)$, the positive sign in the limit notation indicates a right-hand limit.

If you think of the function as a highway and imagine you are traveling along the graph of f(x) toward x=4 FROM THE RIGHT, NOT TO THE RIGHT, and you stop at the vertical line x=4, the y-value where you stop is 3. Therefore, $\lim_{x\to 4^+} f(x)=3$.

You will use this graph to explore the limits for the problems on the next page.

Figure 1-1

EX #1: Use Figure 1-1 to find the function values and evaluate each of the following limits:

minto.	
1. f(2) — \	2. f(-1)
$3. \lim_{x \to 4^{-}} f(x) \qquad 3$	4. $\lim_{x \to 2^+} f(x)$
$5. \lim_{x \to 2^{-}} f(x) \qquad - \Big $	6. $\lim_{x \to -1^+} f(x)$ 2
7. $\lim_{x \to -1^{-}} f(x)$ 2	$8. \lim_{x \to -4^+} f(x) \qquad 2$
9. $\lim_{x \to -4^-} f(x)$ Ine	10. $\lim_{x \to -1} f(x)$ 2_
11. $\lim_{x \to 2} f(x)$ Ine	12. $\lim_{x \to 5} f(x)$ -2
13. $\lim_{x \to 0} f(x)$ \sim	14. $\lim_{x \to 1} f(x)$ —2

EX #2: Think about this!

If we think of the function as a highway, then the point at (2, -1) could be considered the end of the road, while the point at (-1, 2) is more like a "pothole." How would you describe the points located at

Hopefully, this analogy gives you a visual reference for understanding limits from a graphical approach. Let's get a little more formal with our definition now.

When finding limits, ask yourself, "What is happening to *y* as *x* gets close to a certain number?" You are finding the *y*-value for which the function is approaching as *x* approaches *c*.

<u>Verbally</u>: The limit as x approaches c on f(x) will exist if and only if the limit as x approaches c from the left is equal to the limit as x approaches c from the right.

EX #3: Limits can fail to exist in three situations:

CASE 1:

Justify why the limit does not exist at x = -1 for $f(x) = \frac{|x+1|}{x+1}$

$$\frac{1 \text{ im}}{x-2-1} + f(x)-1 \\
\frac{1 \text{ im}}{x-3} - f(x) = -1 \\
\frac{1 \text{ im}}{x-3-1} + f(x) \neq \frac{1 \text{ im}}{x-2-1} + f(x)$$

CASE 2: Oscillation

Justify why the limit does not exist at x = 0 for $f(x) = \sin\left(\frac{1}{x}\right)$

A+
$$X=0.1$$
 at $X=-0.1$
 $X=0+1$ f(x) $X=0+1$ $X=0+1$

limit PNE

Case 3: Un houn Led behavier

Justify why the limit does not exist at x = 2 for $f(x) = \frac{1}{(x-2)^2}$

Justify why the limit does not exist at
$$x = 2$$
 for $f(x) = \frac{1}{(x-2)^2}$
 1 im
 $X-2+$
 1 im
 $1 \text{$

EX #4: YOU OWN IT! In the box below, complete the sentence in your own words.

In order for the GENERAL LIMIT to exist, the function:

EX #5: Sketch a graph to satisfy each set of conditions.

- 2. x = a is a point discontinuity
- 3. $\lim_{x \to a} f(x)$ exists

- 1. $\lim_{x \to a} f(x)$ DNE
- -2. x = a is a jump discontinuity
- 3. f(a) is undefined

EX #6: Finding limits from a table of values

Now, consider the function $f(x) = \frac{x-3}{x^2+2x-15}$. Complete the table below to find the limit as $x \to 3$.

х	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)	0.1265	0.1251	0.125	PNE	0.1249	0.1248	0.1234

Based on your analysis, what are the values of each of the limits below?

$$\lim_{x \to 3^{-}} f(x) = 0.125 \qquad \lim_{x \to 3^{+}} f(x) = 0.125 \qquad \lim_{x \to 3} f(x) = 0.125$$